题目链接

传送门

Description

一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四个数,l1,r1,l2,r2,即两个长度相同的区间,表示子Sl1Sl1+1Sl1+2...Sr1与Sl2Sl2+1Sl2+2...Sr2完全相同。比如n=6时,某限制条件l1=1,r1=3,l2=4,r2=6,那么123123,351351均满足条件,但是12012,131141不满足条件,前者数的长度不为6,后者第二位与第五位不同。问满足以上所有条件的数有多少个。

Input

第一行两个数n和m,分别表示大数的长度,以及限制条件的个数。接下来m行,对于第i行,有4个数li1,ri1,li2,ri2,分别表示该限制条件对应的两个区间。1≤n≤10^5,1≤m≤10^5,1≤li1,ri1,li2,ri2≤n;并且保证ri1-li1=ri2-li2。

Output

一个数,表示满足所有条件且长度为n的大数的个数,答案可能很大,因此输出答案模10^9+7的结果即可。

Sample Input

4 2
1 2 3 4
3 3 3 3

Sample Output

90

题解

这题挺神的 考试的时候我拿了40分
40分太简单了 直接打暴力
100分是并查集+倍增
我们用$f[i][j]$表示以$i$开头的长度为$2^j$的区间的编号
$pos[i]$表示编号为$i$的区间的起始位置
$fa[i]$表示编号为$i$这个区间的祖先
然后直接合并就行了
最后有一个下传的过程 下传到每个数 也就是$f[i][0]$
最后统计答案就行了

代码